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A bslract

The objective of this paper is to clcvc]op  a statistically optimal assimilation

algorithm which estimates the entire system state, i.e., vertical soil moisture and

tcrnpcrature  profiles, from information which is only available for portion of the

system (namely, the near--surface soil moisture and temperature). A physical

model of coupled heat and water flux is used to propagate the information to the

unobserved portion of the system. This problem will be regarded as the inverse

problem by combining the radiative transfer equation as the observation equation

and the water and heat transport equation as the system equation. The Kalman

filter statistical scheme is then used to propagate (forecast) the best estimate of

the system (conditional mean) based on the initial conditions and the system

equation. Occasionally, as remote sensing observations become available (in the

form of brightness temperature), the observation equation is used to update the
. .

states with the information extracted from the observations.



Introduction

The space-based measurement of emitted radiation in various spectral

intervals contains relevant information about the state of the surface and the

intervening atmosphere. operational and research satellite and aircraft programs

have expanded to become the major source of observational data for earth and

atmospheric science applications.

The measured emitted radiation in itself is of little value; there is a need

for geophysical calibratiorr whereby the radiation intensity in a specific spectral

range, often in combination with others or transformed functionally, is related to

an environmental variable of interest. ‘l’he mapping between the radiation

readings and the environmental variable are often established on empirical bases.

The purpose of this paper is to introduce an assimilation scheme that serves

three major purposes: 1) it provides the geophysical calibration for the remote. .

sensing of an important state in land-atmosphere interaction, namely

moisture profile, 2) it produces the mapping between passive microwave

measurements and the volumetric soil moisture content profile based

the soil

emission

on first

principles in radiative transfer and without reliance on empirical relations, and 3)

it ~lrovides  the framework for multi–spectral and multi-sensor data assimilation

in a simultaneous and consistent manner.

Soil moisture at the surface is instantaneously important in partitioning the

net radiation into latent and sensible heat fluxes; the soil moisture at depth is

critically important in determining the response of the land system to cycles of

intermittent storm and interstorm forcing. During a storm, the

(that partitions the incoming precipitation into runoff and

infiltration rate

infiltration) is

front at depth.ndcnt  on the soil moisture content ahead of the wetting

ng interstorm  periods, the evapc)transpiration  rate is dependent on the
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moisture state below the shallow depth that controls the instantaneous response.

Determination of water balance over land regions is critically dependent on the

availability of accurate information on the soil moisture

meter or more.

Selective spectral ranges in the microwave (less

identified as capable of providing some information on

down to a depth of one

that 10 GIIz)  has been

the moisture content of

the soil. This microwave radiation is mostly unaffected by the intervening

atmosphere and clouds. It is a rather weak emission; the dielectric constant

properties of water stored in the soil affect its emission and attenuation

significantly and it thus contains some information on soil moisture.

The emitted radiation and its brightness temperature is a weighted integral

of the temperature of the soil column. The weighting is according to to the

abundance of water and other factors. !I%e major problem is, however, that the
. .

radiation is significantly attenuated in the soil matrix.; the e-folding depth scale

of the weighting function is a function of the microwave frequency and the

volumetric moisture content. This depth scale varies between a few centimeters

to ten centimeters for the microwave range indicated above over a variety of

hydrologic conditions. Clearly the soil moisture profile down to a depth of a

meter or

In

more cannot be determined directly by the use of microwave data alone.

the next Section, a review is made of some of the published techniques

and schemes introduced in the literature that arc designed to infer the soil

moisture profile at depth from surface microwave (passive and active)

observations. In the ccmtinuing  Sect ions , an algorithm is introduced that

provides the geophysical calibration for soil  moisture profile based on

multi–spectral observations. It is a combined heat and moisture transport

modeling and radiative transfer modeling algorithm. In this paper  the focus is on
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algorithm development

few characteristics of

inverse–problem where

and testing; a synthetic example is used to illustrate a

the retrieval system. The system is posed as an

only a few c}bservations  (brightness tenlperatures)  are

available as some integrated measures of a system with many degrees of freedom

(profiles of soil moisture and temperature). IIue to the excess of the degrees of

freedom, the problem has no unique solution. An algorithm is developed to track

the evolution of the soil heat and moisture transport in order to find constraining

factors that will reduce the uncertainty on the solution to the inverse-problem.

In the same process, observations are sequentially assimilated and used to update

the knowledge of the states of the system, The final result is that by observing

portions of the system (microwaveobs  ervations  of near–surface soil moisture), the

information is transferred to lower depths by the transport model and the soil

moisture profile is estimated down to a meter depth.

In the final Section, concluding remarks “are made regarding the algorithm.

Several additional issues are discussed in this last Section; the field-validation of

the algorithm, the inclusion of vegetation and other factors are discussed and

outlined as the focus of future investigations based on this preliminary study,

have been a number of significant research efforts directed towards

the capability of monitoring soil  moisture by xemote sens ing

(Schmugge, 1983; Jackson, 1988; Jackson and Schmugge, 1989;

1991). Schmugge et al. (1986) find that the multi–sensor approach

that includes a low frequency microwave component (1.4 Gl{z 21 cm L-band) is

best suited for land–atmosphere interaction studies.

The critical need for estimating the soil moisture and temperature profile



down to depths beyond the penetration reach of remote sensing radiometric

observations has resulted in numerous investigations into this topic. These

investigations mostly rely on estimates of the near–surface volumetric soil

moisture that are made by applying empirical relations between the measured

brightness temperature and surface soil moisture. Each study then uses a

different scheme to infer the soil moisture at depth.

Jackson (1980) developed an algorithm based on the assumption that the

soil  moisture profile in the prolonged interstorm period is in hydrostatic

equilibrium. In this case the matric head profile +(z) has a slope of –1 with

depth. When the surface soil moisture is determined by passive microwave

remote sensing, a first-order estimate c)f the rest of the soil moisture profile may

be made by invoking the hydrostatic assumption. Jackson (1980) shows that this

model is mostly applicable when the soil conditions are near equilibrium. When

the interstorm period is characterized by strong drying due to evaporation,

significant departures from equilibrium may occur. In response to this issue,

Camillo  and Schmugge (1983) extended this model to include a root sink term.

[jJJ. k In a later investigation Q~@llo  and Sch~ugge~~8N_.relate  cumulative rainfall—= —— --- --- .-

4 -~d (surrogate variable for water content in a column of soil) to the brightness

temperature in the microwave range.

A number of studies use the surface soil  moisture observation, as

determined by empirical relations between soil moisture and microwave bright *PCS
~) < ,.

temperature pn~ reflectivities,  as the concentration boundary condition on the

vertical soil moisture diffusion equation. In this manner, sequential observations

are used to infer the soil moisture profile. Druckler  and Witono  (1989) and

l’revot  et al. (1984) use reflectivities  from active microwave systems as the upper

boundary condition for the soil water diffusion equation. Stroosnijder  et  al .
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(1984) and Newton et al. (1983) use

setting.

The purpose of this paper  is

passive microwave observations in a similar

to introduce an assimilation scheme that

similarly combines transport modeling and remote sensing, The chief focus is

nevertheless to reduce the reliance on empirical geophysical calibrations and

instead solve the inverse--problem directly, The inverse-problem is essentially

contained in the radiative transfer equation. The moisture heat and moisture

transport equations are used to place constraints on the system, The two are

combined in the context of a filter that merges them into one model. In this

respect the report of Milly and Kabala (1986) is of fundamental importance. In

that study, the Kalman  filter that includes a soil heat and moisture transport

model is used to estimate the surface moisture content by tracking the diurnal

surface temperature range changes. The thermal inertia of the surface is a

function of the moisture content and thus the--diurnal range is a measure of the

the relative soil saturation.

In the next Section, the radiative transfer equations that define the

inverse-problem and the heat and moisture transport and storage equations that

provide the constraints are introduced. Finally the filtering algorithm that

combines them is outlined and its featu~es  are demonstrated through an example.

This paper

provides a test of

of this paper is

builds on results reported in Entekhabi  et al. (1993) and
y Vi. @

- .  —-. . .  __ v
. {x’.  ~

the algorithm under various forcing conditions. Since the focus

sensitivity studies on the algorithm, the full equations that

constitute the algorithm are only summarized. The details may be found in

Entekhabi  et al. (1993) where the algorithm and its components are explained in

full .
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The Radiative Transjer  Problem
/ ’
/The microwave brightness temperature is a co~~p  icated  function of the soil

dielectric constant and temperature profiles. Njoku and Kong (1977) outline the

principles behind the determination of the brightness temperature based on

theory of electromagnetic fluctuation. By using these fluctuations as the source,

Maxwell’s equations, with appropriate boundary conditions, can be used to solve

for radiation intensity emitted from a surface bounding a medium.

‘I’he analytical solutions exist only for a few simple functional forms of the

soil temperature and dielectric constant profiles. For more complicated or

arbitrary shapes for the profiles, the stratified medium approach and the WKEl

approximation are considered by Njoku ad Kong (1977), The stratified model is

a discrete and an approximate solution for the integrals in the coherent wave

model. In general, the sensing depth and relative contributions of the various
. .

depths to overall  brightness temperature varies with different microwave

frequencies. The definition of a temperature weighting function allows one to

quantify the relative contribution of the subsurface regions to the overall

brightness temperature. The p-polarized brightness temperature observed at

angle a is,

T]] (a) .= Jo T(Z) Fp{Cr(Z),Q} dz
P -uJ

where [r(z) is the dielectric constant profile and T(z) is

The functional Fp{cr(z), a} is a weighting function and

contributions of the subsurface regions to the overall

(1)

the temperature profile.

it indicates the relative

brightness temperature.

These weighting functions can be computed from the stratified model and are

presented in Njoku and Kong (1977). The dielectric constant for a partially

. . . .
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saturated volume of soil is related to the volumetric soil moisture content; here

we use a linear model similar to that found in Wang and Schmugge (1980).

E q u a t i o n  ( 1 )  i s  e s s e n t i a l l y  t h e  inverstiproblem. g’he brightness

temperature observation is related to an integral of the states we wish to

estimate, For a discretized  profile, this integral translates into one equation and

many unknowns. The problem has too many degrees of freedom to yield a

unique solution. Entekhabi  et al. (1993) further

inverse-problem posed in Equation (1),

Since the temperature and moisture profiles,

discuss the properties of the

especially their evolution, are

constrained to conform to equations governing heat and moisture storage and

transport, these latter relationships may be used to further reduce the excess

degrees of freedom in the inverse–problem. In the following sub-section, the

constraining relations are outlined.
. .

Moisture and Heat Transport in Unsaturated Porous Media

The coupled flow of heat and moisture in the soil matrix c)ccurs  in both

vapor and liquid phases but the vapor term is orders of magnitude smaller than

the liquid flux and may thus be neglected. The coupling between the heat and

liquid moisture equations are through the heat capacity of the soil and through

the thermal conductivity dependence on soil moisture. Using the well–known

Darcy  equation and mass--continuity, we may write the Richards equation for

moisture transport in partially saturated porous media as

~  =  V. [KV~ +  Kk] (2)

where 0 is the volumetric moisture content, K is the unsaturated hydraulic

conductivity (a function of O), ~ is the matric  head (also a function of 0), and k
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is the unit vector in the vertical.

The heat transport equation may be similarly written in terms of a heat

capacity (composed of volumetric contributions from soil particles, air and water

content 0) and a heat flux equation containing the thermal conductivity term A.

The thermal conductivity is a function of the soil moisture content.

Storage and transport coefficients in the equations are functions of the state

variables. They are the major source of nonlinearity and coupling between the

heat and moisture transport components, Entekhabi  et al. (1993) outline the

detailed forms of the parametrized storage and transport coefficients (e.g.

hydraulic conductivity, heat capacity, soil--water retention, thermal conductivity,

etc.).

The heat and moisture transport and storage equations form a set of

nonlinear partial differential equations (P DEs). Integrating over finite--element. .

space, those nonlinear PDEs are reduced to the following set of nonlinear

ordinary differential equations (ODES) whose unknowns are the values of

state variables at a finite number of points (after Milly and Eagleson  (1980)),

A~+13T+C*+D’1’+E=O

the

(3)

where W and T are n x 1 vectors defined by V = [@l . . . @n]T and

T == [Tl o + ● Tn]T, The subscripts of W and T indicate the nodal locations in

the vertical soil column. The dot operation implies time derivative. A, B, C, D

and E are coefficient matrices that are functions of the state variables. The

ODE state space representations shown above are still nonlinear with respect to

state.

Equation (3) together with the discrete stratified model

Njoku and Kong (1977)) form a set of equations that govern

9
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vector,

X=[v’l’]q’. (4)

Now we wish to extend the system to include multi-spectral and

multi-sensor observations and then outline the algorithm that yields a unique

solution for the state X given the observations. We define the nonlinear

observation vector function h for one polarized passive microwave channel and an._— — .. —-- -.— ..__~ .

infrared channel,

I I
TIII, (*, T)

h(X) ~ TBV(V,’I’)

[ IR(’I’s)j

as an example. Furthermore, we write (3) as

(5)

(6)

Equations (5) and (6) now need to be combined

There is uncertainty associated with both

the propagation equation (6). The uncertainty

in a consistent manner.

the observation equation (5) and

stems from a number of sources

ranging from instrument error to heterogeneity in soil properties. We assume the

the errors result in zero-mean additive noise to both (5) and (6). The noise

variables are independent (both serially and cross-serially) and have a gaussian

marginal distribution. This last attribute allows us to define their characteristic

and strength through their covariance  matrix alone. I,et R be covariance  01 ,iit)

observation errors and Q the covariance  of the error in the propagation system.

In the context of the forthcoming example, the role of adding noise to the system

and its practical consequences will be revisited,

Equations (5) and (6) with noise added no longer define a unique solution



for the augmented state X; rather, they define the probability distribution of the

state. The best-estimate of the state may be obtained by establishing the

conditional–mean of the distribution, ‘1’hc Kalman  Fi l te r  may be  used  to

estimate and track the conditional-mean of the noisy system (Bras and

Rodriguez-Iturbe,  1985; Gclb, 1974). This algorithm is optimal in the statistical

sense in that it conforms to the least–squares of the error residuals.

The observation and propagation equation’s in (5) and (6) are nonlinear

functions of the state X. A straight-forward application of the Kalman  Filtering

algorithm is not possible. It is necessary to first linearize the equations so that

they may be combined in a Bayesian  framework as required by the Kalman

Filter. Entekhabi  et al, (1993) discuss the various issues associated with the

differing approaches to linearization; here we simply report that the observation

and propagation equations were linearized using a first-order Taylor-series

expansion around the latest available estimate of the conditional mean,

F(x(t))  “ F(~k) + A(+)(x(j)  - ‘k) + “ “ “ (7)

and

h(xk)  = ‘(~k) + lT(~k)(x(tk)  - ~k) + “ “  “

where the conditional mean. is

ik == E[x(tk)]

(8)

(9)

at discrete time tk, The matrix A( ) is the Jacobian of the coupled heat and

moisture transport and storage model (Milly and Eagleson,  1980). The matrix

11( ) is the Jacobian of the Njoku and Kong (1977) stratified model of radiative

transfer. These Jacobians  are determined by the use of Lfuthematica,  a symbolic.---— ___

algcbra  environment for the digital computer (Wolfram, 1988).
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Given the initial state XO with covariance

temperature profiles are propagated (denoted by

. .

matrix PO ) the soil moisture and

minus symbol) in time by

Xk(-)  =  ‘k-.I ‘k-l (lo)

where E
k–1

is the transition matrix resulting from the linearized and discretizcd

coupled moisture and heat flow in the vertical column. The associated error

covariance  is propagated according to

(11)

where the system

above equations

conditional mean

covariance  Q is first used. If the system is “controllable”) the

should provide the necessary conditions to estimate the

of the system based on the inputs (such as boundary

conditions). Formally, controllability refers to when E Q ET is bounded and

positive-definite. . .

Initial estimates for the state vector variance will decrease with occasional

remote sensing observations if the system is “observable”. ‘I’he state vector is

updated (update using observations ~; updates denoted by positive sign)

whenever the observation is available according to,

~k(+) = ~k(-) 4- Kk[zk - I@k(-))]

The Kalman  Gain matrix Kk weights the observation against

forecast. Its weighting is determined by the relative magnitudes

uncertainty embodied in Pk(-) with respect to observation error

Kalman  Gain is given by,

‘k = ‘k(-) ]l:(i&))[Hk(i~(--))l’k(-)~:(~k(-))  + Rk]-l

(12)

the model

of model

R k. The

(13)
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Associated error covariance  update is given by,

Pk(+-) = [1 - Kkl@k(-))]Pk(-) (14)

where I is the identity matrix. Derivations for these algorithms are outlined in

both Gclb (1974) and Bras and Rodriguez-lturbe  (1985).

Application of the Retrieval A Zgorithm

Synthetic environmental conditions are generated and the algorithm is—._.

tested with this example for which the true situation is numerically known. The

finitc+elernent  model of Milly  and Eagleson (1980) is used to generate one week

of soil moisture

uniform –50 cm

the meter-deep

evaporation and

and temperature profiles beginning with an initial condition of

matric suction and 20 degrees Celsius temperature throughout

soil. The boundary conditions are assigned as 0.5 cm/day

a diurnal soil heat flux at the surface. No heat and moisture

flux are allowed at depth for this clay soil column.

Figure 1 shows the drying profiles under these conditions sampled every

half--day, Figure 2 illustrates the diurnal temperature fluctuations for the same

synthetic example. ‘J’he stratified model Njoku and Kong (1977) is used to

generate a time-series of brightness temperature for 1.4 and 9.2 GHz passive

radiation. Figure 3 is the time-series of the brightness temperatures and the

surface temperature time–series. The latter tinle-series are used for infra–rcd

observations. ‘1’he diurnal cycle is apparent in all the tim~cries;  the upward

trend in the brightness temperatures are duc to the drying of the soil and its

changing dielectric constant properties.

The retrieval algorithm is provided with an intentionally poor initial guess

of the states. For example, the initial soil moisture is guessed to be –300 cm

13



while in reality it is considerably lower at –50 cm. In order to demonstrate the

capability of the algorithm in using observations in correcting for the poor initial

guess and eventually retrieving the true soil moisture profile down to a depth of

at least one meter, two comparisons are made, The first is the comparison

between the algorithm and the true values (unknown to the algoxithm)  when at

every hour an update is made using observations. The second is a comparison

between the true situation and an “open--loop” run of the algorithm where no

observations are supplied to the system. If the algorithm is really using the

observations and assimilating them in order to improve its estimates of the soil

moisture at depth, then the improvements seen in the updated algorithm must

not be present in the open–loop results.

The sensitivity study that is the main objective of this paper relates to the

added noise. In the previous section, it was illustrated that the noise levels (as

measured by the covariance  matrices R and’ Q for the observation and the

propagation systems) determine the level of controllability and c)bservability in

the retrieval algorithm. Here we will return to these issues in the context of the

example. For illustration purposes, we assign a white noise level equivalent to

5% of the state as

taken to be 2% of

10% for the 1,4

the error in the prc)pagation system, The observation noise is

the 9.2 GHz brightness temperatures and a very high value of

GHz brightness temperatures. The la t te r  value is rather

extreme; it is a value used to illustrate the sensitivity clearly. Entekhabi et al.

(1993) discuss in more detail the criteria for the choice of noise and the role of

noise in insuring the stability of the retrieval algorithm.

Figure 4 summarizes the results by the tim~series  representation of the soil

matric head (surrogate for volumetric soil moisture conetent  and related to it

uniquely by the soil–water retention curve) for five discrete depths. The whole

14
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profile is modeled by

example refers to the

observation are used,

twenty–five nodes down to a depth of one–meter. This

multi-spectral retrieval when a 9.2 GHz and an infra-red

The true soil moisture states are denoted by open circles;

they begin at –50 cm at the time~rigjn. Drying is apparent at all vertical levels

due to the evaporation. The algorithm with the updates and the open-loop

integration both begin in time at the intentionally poor estimate of –3oO cm

matric head. As evident in Figure 4, beginning at the surface where the

microwave and infrared information are provided directly, the updated algorithm

(filled circles) begins to correct the initial guess towards the true profile (the

algorithm is unaware of the existence of the true profile data). The open--loop

results (open triangles) continue the drying trend since they do not have the

benefit of observations. As a result, there are no corrections to the initial poor

estimate of the profile apparent. After the third day, the algorithm has found

the true profile (the true and unique solution..of  the inverse–problem) and after

that time, the algorithm tracks the true situation exactly. The 2% noise level in

this example is considered to be the upper limit of what is expected of

instruments and environmental conditions. The next example uses a 10% noise

level which is unrealistic but it help us to understand an important sensitivity in

the algorithm. This high noise level illustrates the intrinsic behavior of the

system and the role of noise in the retrieval.

Figure 5 shows the near–surface soil moisture estimates; the remainder of

the profile reflects these conditions. ‘1’he true values (open circles) are the ~~

as before. The updated algorithm (filled

initial guess (as evident in the divergence

do not capture the true profile as much as

circles) begin to improve on the poor

from the open--loop results) but they

the previous case. This is due to the

high amount of variance associated with the observations; the algorithm simply

15



does not trust the observations and prefers to make its

moisture state by relying more on propagating the initial

Mo and Schmugge (1983) determined the effect

best estimate of the soil

state.

of noise on microwave

emissivity  and soil moisture using simulations. Their results, information on

heterogeneity in the natural environment, and sensor specifications may be used

to further define the range of values for the noise intensities in the algorithm.

The noise level in the observation and the propagation equations may be used to

insure the stability and efficiency of the retrieval algorithm. The controllability

and observability of the system may be engineered using the noise levels. One

important output of this algorithm is the probability distribution of the estimates

for soil moisture and temperature at all depths. In this brief report we have

focused only on the mean values. ‘I’he variance and distribution of the estimates

may be used to very effectively perform important error analyses on remote

sensing applications.
. .

conclusions

An algorithm is developed that solves the invers~-problem  associated with

the upwelling brightness temperature from a column of soil. The algorithm

combines radiative transfer equations with the equations governing the coupled

transport and storage of heat and moisture in the vertical soil column.

The examples of the retrieval in this paper show that the algorithm is

capable of 1) extracting the soil  moisture information from brightness

temperatures without empirical geophysical calibration formulae, 2) effectively

assimilate multi–spectral and multi-sensor observations, and 3) estimate the soil

moisture at depth far beyond the direct sensitivity range of low–frequency passive

microwave observations.
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In future applications, the role c)f

signature needs to be included (Mo et al,,

al., 1983). The soil texture also has strong

its influence must be considered (Schmugge,

vegetation in altering the emission

1982; Jackson et al., 1982; Ulaby et

influence on microwave emission and

1980; Mo et al., 1987; Wang et al.,

1983; and Tsang and Newton, 1982). Testing with field observations is an

ongoing research activity. Multi-sensor and multi-spectral data on a field site

where the soil moisture has been reliably measured down to over one–meter for

several days are not readily available. In this respect, the authors are planning a -”

field expedition with the required ground--truth observations and low–frequency

microwave radiometers for the near future. -. \
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Figure 1. Twice-daily profiles of soil matric head under conditions of

5 mm/day evaporation and initially ~ = -50 cm uniform

conditions. The coupled remote sensing-modeling retrieval

algorithm is used to estimate these synthetic profiles starting

from a bad initial guess and occasional passive microwave

and infra–red  observations.



SIMULATED TEMPERATURE PROFILES
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Figure 2. Same as Figure 1 but for the soil temperature profile.

The soil column is subject to periodic (diurnal) radiative

forcing.
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Figure 3. The surface temperature and brightness temperature for the synthetic example.
‘l’he brightness temperature follows the same periodic pattern as the diurnally-forced
surface temperature. The rising trend in the brightness temperaiurc  is due to the
drying of the soil column. Brightness temperatures are generated by the Njoku and
Kong (1977) model.
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Figure 4. The matric  head at different depths using the 9.2 Ghz microwave observations.
The retrieval algorithm is making a weighted average of the “open-loop” (trust]ng
soil heat and moisture model forecasts based on initial guesses) and the
observations. Since ‘in this case the observations are given high confidence (low
variance), the algorithm succeeds in tracking the true profile.
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Figure 5. Same as Figure 4 but for 1.4 Gllz observations with more

uncertainty (larger variance). Now the retrieval algorithm

places more confidence in the forecast using the soil heat and

moisture diffusion equations.
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